

Welcome to Digital Milliet’s documentation

Contents:

	Overview
	Installation Instructions

	Configuration

	Authentication and Authorization

	Design: Motivation, Standards, Dependencies

	Workflow

	Database Schema

	Modules

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/digital_milliet.svg]
 [https://travis-ci.org/perseids-project/digital_milliet][image: _images/badge.svg]
 [https://coveralls.io/r/perseids-project/digital_milliet?branch=master][image: _images/a1672511ea6935e88c3a45e58ee6180c79a97d2d.svg]
 [http://digital-milliet.readthedocs.io/en/latest][image: _images/40543211.svg]
 [https://zenodo.org/badge/latestdoi/40543211]Full Documentation at http://digital-milliet.readthedocs.io/en/latest/

Overview

The Digitat Milliet supports the creation and display of an interactive collection of ancient Greek and Latin texts about
painting. It is a digital interpretation of “The Recueil des textes grecs et latins relatifs à la peinture ancienne”
(“Collection of Greek and Latin Texts Concerning Ancient Painting”), the initiative of a French academic painter,
Paul Milliet, who had a passion for ancient Greek culture.

[image: _images/dmhome.png]
[image: _images/dmbrowse.png]
[image: _images/dmread.png]
The Digital Milliet is implmented as a Flask Application, backed by a MongoDB database, supported by external
web services.

Installation Instructions

The following instructions are for setting up a Development environment for Digital Milliet.

Install Prerequisites:

	mongodb

	python 3.5, pip and virtualenv

sudo apt-get install -y python3-pip python3-dev build-essential mongo

Clone the repository

git clone https://github.com/perseids-project/digital_milliet

Setup the sample data

mongorestore digital_milliet/db/sample

Create a virtual environment

cd digital_milliet
virtualenv -p /path/to/python3 venv
source venv/bin/activate
python setup.py install

Run the code, installing test fixtures and with a fixed user:

python runtest.py --install --loggedin

Or with Docker and Docker Compose

git clone https://github.com/perseids-project/digital_milliet
cd digital_milliet
docker-compose build
docker-compose up

For production deployment, see Puppet manifests in the puppet subdirectory of this repository.

Configuration

All deployment specific variables and dependencies are specified in an external configuration file. By default the application looks for a configuration file named config.cfg in the digital_milliet base directory. An alternate
path can be supplied in an argument to the DigitalMilliet Flask Application:

DigitalMilliet(app, config_files=["path/to/your/config.cfg"])

The default contents of this configuration file, with explanation of each setting, is provided below:

Name of the Mongo database
MONGO_DBNAME = 'app'

Secret key for Flask session
SECRET_KEY = 'development is fun'

Perseids OAUTH Setup
OAUTH_CONSUMER_KEY and OAUTH_CONSUMER_SECRET must be supplied by Perseids Administrator for Production use
OAUTH_NAME = "digitalmilliet"
OAUTH_CONSUMER_KEY = 'dummy'
OAUTH_CONSUMER_SECRET = 'dummy'
OAUTH_REQUEST_TOKEN_PARAMS = {'scope': 'read'}
OAUTH_BASE_URL = 'https://sosol.perseids.org/sosol/api/v1/'
OAUTH_ACCESS_TOKEN_URL = 'https://sosol.perseids.org/sosol/oauth/token'
OAUTH_ACCESS_TOKEN_METHOD = "POST"
OAUTH_REQUEST_TOKEN_URL = None
OAUTH_AUTHORIZE_URL = 'https://sosol.perseids.org/sosol/oauth/authorize'
OAUTH_CALLBACK_URL = 'https://digmill.perseids.org/digmil/oauth/authorized'

Name of the collection for author records (future proofing to enable move to a separate collection)
AUTHORS_COLLECTION = "annotation"

Set this to the ID for the Perseids community id in which membership enables Digital Milliet editorial permissions
ENFORCE_COMMUNITY_ID = None

Not to be used in Production: eases development without OAuth Setup
OAUTH_USER_OVERRIDE = { 'oauth_user_uri' : 'http://sampleuseruri', 'oauth_user_name': 'Sample User' }

Perseus Catalog API - Used for Lookup of Author and Work Metadata
CATALOG_API_URL = 'http://catalog.perseus.org/cite-collections/api'
CITE_URI_PREFIX = 'http://perseids.org/collections/'
CITE_COLLECTION = 'urn:cite:perseus:digmil'

CTS API Endpoint for Retrieval of Primary Source Texts and Translations
CTS_BROWSE_URL = 'https://cts.perseids.org'
CTS_API_URL = 'https://cts.perseids.org/api/cts/'
CTS_API_VERSION = 5

Authentication and Authorization

The Digital Milliet application itself does not provide a user model or any AAI functionality.

The Create, Update and Delete functionality of the Digital Milliet application can be protected by the OAuth2 protocol.
The location of the OAuth2 endpoint and other details must be supplied in these configuration settings:

OAUTH_NAME = "digitalmilliet"
OAUTH_CONSUMER_KEY = ''
OAUTH_CONSUMER_SECRET =''
OAUTH_REQUEST_TOKEN_PARAMS = {'scope': 'read'}
OAUTH_BASE_URL = ''
OAUTH_ACCESS_TOKEN_URL = ''
OAUTH_ACCESS_TOKEN_METHOD = "POST"
OAUTH_REQUEST_TOKEN_URL = None
OAUTH_AUTHORIZE_URL = ''
OAUTH_CALLBACK_URL = '<digmill_application_host>/oauth/authorized'

The deployment at https://digmill.perseids.org uses Perseids (https://sosol.perseids.org/sosol) as its OAuth2 provider.
Perseids in turn delegates to Social Identity providers for user authentication. Perseids assigns a URI identifier to
authenticated users and users supply a public-facing full name that they wish to be affiliated with their Perseids account.
This information (the Perseids User URI and Full Name) are added as the creator associated with annotations created in
the Digital Milliet application. Once a record is created, if it’s edited by a user other than the creator, that user is
added as an additional editor in the updated annotations.

Although not recommended for production use, it is possible to disable the OAuth2 protection by setting the name and URI
to associate with all records via the OAUTH_USER_OVERRIDE configuration setting. This could be used in combination with a simpler authentication method such as HTTP Basic Authorization.

OAuth2 provides Authentication but not Authorization support. (By Authorization we mean restricting create/update/delete
access of Digital Milliet entries to only specific authenticated users.) Implementing a full user model and role-based
authorization was out of scope for development of the Digital Milliet application. A potential future goal is to use
the Perseids platform to provide editorial review board functionality, removing the ability to edit annotations directly
in the Digital Milliet application.

With this goal in mind, we implemented a Perseids-specific stop-gap solution to provide Authorization functionality to
the Digital Milliet application. The application configuration allows for the specification of the identifier of a
Perseids review community (via the ENFORCE_COMMUNITY_ID setting). If this is specified, then authenticated users
must be a member of the Perseids Community with that id in order to be able to create, edit or delete entries in the
Digital Milliet. If the ENFORCE_COMMUNITY_ID setting is left empty, this functionality is disabled and all
authenticated users can create, edit or delete entries.

Design: Motivation, Standards, Dependencies

The aim behind the design of the application was to support the representation of each entry in the original “Recueil”
as a graph of annotations.

The primary annotation of a Digital Milliet graph/record set is a Commentary targeting
a stable CTS URN identifier of the primary source Greek or Latin text which was the subject of the entry in the “Receuil”.
This commentary annotation gets assigned an identifier which includes the original number of the entry in the “Receui”.
Throughout the code and interface, this is referred to as the “Milliet Number”.

Additional annotations in each graph include a Bibliography, French and English translations of the primary source text,
tags (freeform and semantic) as well as images representing the described artwork or related material. The images can
also be annotated.

Entries are indexed for browsing both by Milliet Number and Author/Work/Passage of the target primary source text passage.

The Digital Milliet application retrieves Author and Work metadata for each primary source text is from the
Perseus Catalog (http://catalog.perseus.org/).

We have used a non-standard form of a CITE URN to assign identifiers to each individual annotation in the graph. This may
eventually be replaced by UUIDs or other identifier system.

In order to facilitate data reuse and interoperability we represent these annotations according to the Open Annotation
data model (http://www.openannotation.org/), a standard data model for serializing annotations on resources in the world wide web.
(This model has now evolved into the W3C Web Annotation Model). Image annotations adhere to the IIIF standard (http://iiif.io).

The original design called for primary source texts and translations to be identified only by their CTS URN identifiers
and all textual passages retrieved at runtime from CTS Repositories.

However, as many of the texts and/or translations we need to refer to are not yet available online at a published CTS
API endpoint, and the stability and long term sustainability of such end points are not clear, the application design
was changed to enabled textual content to be included in addition to or instead of the CTS URN identifier of a text or
translation.

The Digital Milliet application depends upon components of the CapiTainS suite (https://github.com/capitains)
for its interaction with CTS endpoints and validation of CTS URN syntax.

The application uses the IIIF standard for image referencing and annotations and reuses the open source
Mirador Viewer (http://projectmirador.org/) to provide image display and annotation functionality.

Workflow

The primary workflow for creating a new entry in the Digital Milliet is described in the diagram below.

[image: _images/513aac6704e222eda88a9c4d25001c01fe2b5033.png?raw=true]
Individual components of an entry can also be edited or added separately after the initial data entry, via the Edit interface.

To create a new entry, you click the Add Record button to bring up the Create form:

[image: _images/dmnew.png]
Use the typeahead features in the ‘Search for a Primary Source Passage’ to search for an existing text in the CTS Repository

[image: _images/dmnew2.png]
If found, you can enter the passage range you are interested in and then click ‘Retrieve’ to to retrieve the text.

If text you need is not found you can supply the text yourself in the input box.

Proceed to enter commentary text, tags and bibliography. Follow the same procedure for translations as you did for
the primary source text.

[image: _images/dmnew3.png]
If an image you want to associate with the entry is available in from an IIIF-compliant image server you can enter
the publisher and URL of the IIIF manifest. This can be an image manifest, or a canvas manifest.

[image: _images/dmnew4.png]
To edit an existing entry, you click the Edit button next to the Digital Milliet number on the Browse display. You
must be logged into see this option.

Editing proceeds similarly to the process for creating a new entry.

[image: _images/dmedit.png]
Image annotations can be viewed, added, edited and deleted directly using the Mirador viewer.

[image: _images/dmimage.png]
Click on the bubble icon to view annotations on the image. Hover your mouse over the marked up areas on the image
to see the annotation text.

If you are logged in you can click Edit or Delete to edit or delete the image annotation.

You use the drawing tools in the Mirador viewer to create new annotations. Select a tool and drag the mouse to
highlight the region of interest on the image. When you release the mouse the annotation dialog will popup and you can
enter and save your annotation text.

Database Schema

The Digital Milliet stores all data in MongoDB.

Digital Milliet commentary entries are stored in the annotations collection.

Author Records are stored in the collection named in the Digital Milliet config file setting AUTHORS_COLLECTION.

IIIF Image annotations are stored in the mirador collection.

(A future enhancement to externalize all collection names is requested in https://github.com/perseids-project/digital_milliet/issues/58)

The schema for the database objects is depicted here:

[image: _images/0999f05b115c4e9bef04f4ae8a557c2e3b958281.png?raw=true]
See also the test fixtures for examples of database entries.

Modules

	
class digital_milliet.lib.commentaries.CommentaryHandler(db=None, authors=None, config=None, auth=None)

	Parses data for retrieval/storage to/from the database

	
__init__(db=None, authors=None, config=None, auth=None)

	CommentaryHandler object

	Parameters

	
	db (PyMongo) – Mongo Db Handle

	authors (AuthorBuilder) – helper for building new Author records

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – configuration dictionary

	
__weakref__

	list of weak references to the object (if defined)

	
create_commentary(form)

	Save a new set of annotations from the input form

	Parameters

	form (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – key/value pairs from input form

	Returns

	the Milliet number for the saved annotations or None if the record couldn’t be saved

	Return type

	string

	
create_tag_annotation(tag, target, creator, date)

	Create a tag annotation

	Parameters

	
	tag (string) – the tag (text or a URI)

	target (string) – the target of the annotation

	creator (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the creator of the annotation

	date (date) – the date the annotation was created

	Returns

	Annotation content to set at annotation[“tags”]

	
form_to_OpenAnnotation(form)

	Make a structure for the annotation from a set of key/value pairs

	Parameters

	form (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – key/value pairs from the form

	Returns

	the annotation

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
format_manifests_from_form(manifest_uri, publisher, date, milnum, update_anno=None)

	Helper to format IIIF Manifests given a form

	Parameters

	
	manifest_uri – Manifest URI

	publisher – Publisher

	date – Current date (Isocode)

	milnum – Current milnum

	Returns

	Value to set at annotation[“images”]

	
format_person_from_authentificated_user()

	Make a Person for an annotation (i.e for contributor or creator)
Uses the URI identifier for the user of the currently authenticated session

	Returns

	Person properties suitable for inclusion in the annotation

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
format_translation_annotation(num, milnum, text, uri, own_uri, lang)

	Build the body of a translation annotation.

	Parameters

	
	num (string) – the translation identifier (t1 or t2)

	milnum (string) – the Milliet number for the annotation

	text (String) – the text of the translation (None if uri or own_uri is supplied)

	uri (string) – the uri of a translation - this is expected to be a CTS URN that appears in the linked cts repository

	own_uri (string) – an user-supplied uri for a translation - this is for an externally linked translation text

	lang (string) – the language code of the translation (‘fra’ or ‘eng’)

	Returns

	the body of the translation annotation

	Return type

	string (for a URI) or dict [https://docs.python.org/3/library/stdtypes.html#dict] (if an embedded body)

	
format_uri(milliet_id, subcollection_id=None)

	Make a Cite Collection URI for an annotation

N.B. this is not a valid implementation of the CITE protocol, as it does not support
CITE collections. Future implementations should consider replacing this with a different identifier syntax.

	Param

	milliet_id: The Milliet number

	Type

	milliet_id: string

	Param

	subcollection_id: the subcollection identifier (e.g. commentary, bibliography, etc.)

	Type

	string

	Returns

	the compiled URI

	Return type

	string

	
generate_uuid()

	Create a unique id for an annotation

	Returns

	uid

	Return type

	string

	
get_existing_tags()

	List all existing tag body values

	Returns

	tags and semantic tags

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
get_milliet(milliet_id, simplify=True)

	Get the first set of annotations that target the supplied Milliet Number

	Parameters

	
	milliet_id – Milliet Number

	simplify (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, simplify for the view

	Returns

	Tuple where first element is the set of annotations and the second the author informations

	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Raises

	404 Not Found Exception – if the annotation is not found

	
get_milliet_identifier_list()

	List all known milliet numbers

	Returns

	List of Milliet Numbers and their commentary ID ?

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
get_surrounding_identifier(cid)

	Given a Milliet number, return the previous and next numbers available

	Parameters

	cid (string) – Milliet number

	Returns

	pair of Milliet numbers

	Return type

	(string, string)

	
remove_milliet(milliet_id)

	Remove the annotation set that targets the supplied Milliet Number

	Parameters

	millnum – Milliet Number

	Returns

	the number of records removed

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	404 Not Found Exception – if the annotation is not found

	
retrieve_millietId_in_commentaries(commentaries)

	Extract a sorted list of Milliet ID from a set of commentary annotations

	Parameters

	commentaries (list [https://docs.python.org/3/library/stdtypes.html#list]) – set of commentary annotations

	Returns

	sorted list of extracted Milliet numbers

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
search(query, tags=None)

	Search commentary record (Filters are exclusive)
currently only searching in tags is supported

	Parameters

	
	query – String to search

	tags – Search in tags

	Returns

	List of matching records

	
simplify_milliet(annotation_set)

	Parse a db record into a dict setup for views

	Parameters

	annotation_set (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the db record

	Returns

	Parsed version of the record

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
update_commentary(form)

	Save an edited set of annotations to the db

	Parameters

	form (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – key/value pairs from edit form

	Returns

	True if successful False if not

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
update_contributors(annotation_dict=None)

	Update the contributors for an annotation

Inserts a Person object for the currently authenticated user if she doesn’t already appear
as either creator or contributor.

	Parameters

	annotation_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the annotation to update

	
validate_annotation(annotation)

	Validate the structure of an annotation.

This is not foolproof but it attempts to catch some errors that could come in from mistakes
in data entry. It would be good to make sure these all couldn’t occur to begin with.

	Parameters

	annotation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the annotation record

	Returns

	True if valid False if not

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class digital_milliet.lib.author_builder.AuthorBuilder(db=None, catalog=None, collection_name='annotation', app=None)

	Provides methods for building new Author records in the database

	
__init__(db=None, catalog=None, collection_name='annotation', app=None)

	Constructor

	Parameters

	
	db (PyMongo) – Mongo Db Handle

	catalog (Catalog) – Catalog API Manager

	
__weakref__

	list of weak references to the object (if defined)

	
author_db_build(data_dict)

	Adds or Updates Author Records in the Annotation Database

Author Records contain authority name and work information
and are populated as annotations referencing an author and work
are added to the annotator store so that they can be used for browsing

	Parameters

	data_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the full annotation

	
author_list()

	Get a list of authors

	Returns

	List of authors record

	
collection

	Quick access to Mongo collection

	
get_author(cts_id)

	Retrieve an author record by CTS ID

	Parameters

	cts_id – CTS Identifier

	Returns

	Author Record

	
get_author_by_mongoId(_id)

	Retrieve an author record by Mongo Id

	Parameters

	_id – Mongo Unique Identifier

	Returns

	Author Record

	
make_author(resp)

	” Make an Author db record from a catalog record and insert it in the database

	Parameters

	resp (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the response from teh catalog lookup

	Returns

	the new Author db record

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
make_work(work_id, millnum, pasg)

	Make a work record from a catalog record

	Parameters

	
	work_id (string) – the CTS URN of a work

	millnum (string) – the Milliet number

	pasg (string) – the passage component from the work

	Returns

	the work record

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
process_comm(comm_list)

	Extract a sorted list of milliet numbers from a set of commentary annotations

	Parameters

	comm_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – set of commentary annotations

	Returns

	sorted list of milliet numbers

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
remove_milliet_id_from_author(millnum)

	Remove milliet number mapping from an author record

	Parameters

	millnum (string) – the milliet number to remove

	Returns

	Number of mappings removed

	
search(query, name=None, works=None, milliet_id=None)

	Search authors record (Filters are exclusive)

	Parameters

	
	query – String to search

	name – Search in Name

	works – Search in Works

	Returns

	List of matching records

	
update_author(cts_id, author_record)

	Update author identified by CTS_ID

	Parameters

	
	cts_id – CTS Identifier

	author_record – Updated Author Record

	Returns

	Result of update

	
class digital_milliet.lib.catalog.Catalog(app=None)

	Provides an interface to a Catalog API Endpoint
which can lookup author and work records by CTS URN

	
__init__(app=None)

	Constructor

	Parameters

	app (Flask) – The Flask App

	
__weakref__

	list of weak references to the object (if defined)

	
lookup_author(urn=None)

	Looks up an Author by authority id in the remote Catalog API endpoint

	Parameters

	urn (string) – The authority id (i.e textgroup CTS URN)

	Returns

	response from the API (this should be abstracted)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
lookup_work(urn=None)

	Looks up an Work by authority id in the remote Catalog API endpoint

	Parameters

	urn (string) – The authority id (i.e work CTS URN)

	Returns

	response from the API (we should abstract this)

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class digital_milliet.lib.oauth.OAuthHelper(app)

	Helper class providing OAuth2 functionality to the application
Implements flask_oauthlib.client

	
__init__(app)

	Constructor

	Parameters

	app (Flask) – the wrapped flask app

	
__weakref__

	list of weak references to the object (if defined)

	
static current_user()

	Gets the current user from the session

	Returns

	{ uri => <uri>, name => <name> }

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
static oauth_required(f)

	decorator to add to a view to require an oauth user

	Returns

	decorated function

	Return type

	func

	
static oauth_token(token=None)

	tokengetter function

	Parameters

	token (string) – the Oauth token

	Returns

	the current access token

	Return type

	string

	
r_oauth_authorized()

	Route for OAuth2 Authorization callback

	Returns

	renders template

	
r_oauth_login()

	Route for OAuth2 Login

	Parameters

	next (string) – next url

	Returns

	Redirects to OAuth Provider Login URL

	
static r_oauth_logout()

	Route to clear the oauth data from the session

	Parameters

	next (string) – next url

	Returns

	redirects to next or renders template

	
user_in_community(user_communities=None)

	Checks to see if the user is the authorized community for editing

This is a hack specific to the Perseids OAuth provider used as a way
to limit editing of DM records to members of a specific community in Perseids
Eventually editing could be delegated entirely to Perseids

	Returns

	True if the user name is listed in the configured community members,
False if the user name is not listed

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class digital_milliet.lib.mirador.Mirador(db, app, parser)

	Parses data for retrieval/storage to/from the database

	
__init__(db, app, parser)

	Mirador object

	Parameters

	
	db (PyMongo) – Mongo Db Handle

	app (Flask) – Flask App

	parser (CommentaryHandler) – CommentaryHandler

	
__weakref__

	list of weak references to the object (if defined)

	
create()

	Create View

	Returns

	Recorded Data

	
delete()

	Delete a record

	Returns

	Status of deletion

	
static dump(content, code=200)

	(View system) Returns a response in json with given code

	Parameters

	
	content – BSON encodable object

	code – HTTP Status Code

	Returns

	Response

	
from_collection(digitial_milliet_id)

	Retrieve a list of annotations from a collection

	Parameters

	digitial_milliet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the Digital Milliet Collection

	Returns

	List of annotation

	
get(image_uri=None, anno_id=None, _id=None, single=False)

	Retrieve annotations

	Parameters

	
	image_uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – URI of the canvas

	anno_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Public Identifier of the annotation

	_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Private Identifier of the annotation

	single (bool [https://docs.python.org/3/library/functions.html#bool]) – Retrieve a single annotation instead of a list

	Returns

	List of Annotations matching the filters

	
search()

	Search View

	Returns

	Result of search

	
static simpleFormat(oAnnotation)

	Simplify the format of the annotation (Removes unnecessary information for Mirador)

	Parameters

	oAnnotation – Annotation to simplify

	Returns

	Simpler Annotation

	
update()

	Update an annotation

	Returns

	Updated Record

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 digital_milliet	

 	
 	
 digital_milliet.lib.author_builder	

 	
 	
 digital_milliet.lib.catalog	

 	
 	
 digital_milliet.lib.commentaries	

 	
 	
 digital_milliet.lib.mirador	

 	
 	
 digital_milliet.lib.oauth	

 	
 	
 digital_milliet.lib.views	

Index

 _
 | A
 | C
 | D
 | F
 | G
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | V

_

 	
 	__init__() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	(digital_milliet.lib.catalog.Catalog method)

 	(digital_milliet.lib.commentaries.CommentaryHandler method)

 	(digital_milliet.lib.mirador.Mirador method)

 	(digital_milliet.lib.oauth.OAuthHelper method)

 	
 	__weakref__ (digital_milliet.lib.author_builder.AuthorBuilder attribute)

 	(digital_milliet.lib.catalog.Catalog attribute)

 	(digital_milliet.lib.commentaries.CommentaryHandler attribute)

 	(digital_milliet.lib.mirador.Mirador attribute)

 	(digital_milliet.lib.oauth.OAuthHelper attribute)

A

 	
 	author_db_build() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	
 	author_list() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	AuthorBuilder (class in digital_milliet.lib.author_builder)

C

 	
 	Catalog (class in digital_milliet.lib.catalog)

 	collection (digital_milliet.lib.author_builder.AuthorBuilder attribute)

 	CommentaryHandler (class in digital_milliet.lib.commentaries)

 	
 	create() (digital_milliet.lib.mirador.Mirador method)

 	create_commentary() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	create_tag_annotation() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	current_user() (digital_milliet.lib.oauth.OAuthHelper static method)

D

 	
 	delete() (digital_milliet.lib.mirador.Mirador method)

 	digital_milliet.lib.author_builder (module)

 	digital_milliet.lib.catalog (module)

 	digital_milliet.lib.commentaries (module)

 	
 	digital_milliet.lib.mirador (module)

 	digital_milliet.lib.oauth (module)

 	digital_milliet.lib.views (module)

 	dump() (digital_milliet.lib.mirador.Mirador static method)

F

 	
 	form_to_OpenAnnotation() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	format_manifests_from_form() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	format_person_from_authentificated_user() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	
 	format_translation_annotation() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	format_uri() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	from_collection() (digital_milliet.lib.mirador.Mirador method)

G

 	
 	generate_uuid() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	get() (digital_milliet.lib.mirador.Mirador method)

 	get_author() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	get_author_by_mongoId() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	
 	get_existing_tags() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	get_milliet() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	get_milliet_identifier_list() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	get_surrounding_identifier() (digital_milliet.lib.commentaries.CommentaryHandler method)

L

 	
 	lookup_author() (digital_milliet.lib.catalog.Catalog method)

 	
 	lookup_work() (digital_milliet.lib.catalog.Catalog method)

M

 	
 	make_author() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	
 	make_work() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	Mirador (class in digital_milliet.lib.mirador)

O

 	
 	oauth_required() (digital_milliet.lib.oauth.OAuthHelper static method)

 	
 	oauth_token() (digital_milliet.lib.oauth.OAuthHelper static method)

 	OAuthHelper (class in digital_milliet.lib.oauth)

P

 	
 	process_comm() (digital_milliet.lib.author_builder.AuthorBuilder method)

R

 	
 	r_oauth_authorized() (digital_milliet.lib.oauth.OAuthHelper method)

 	r_oauth_login() (digital_milliet.lib.oauth.OAuthHelper method)

 	r_oauth_logout() (digital_milliet.lib.oauth.OAuthHelper static method)

 	
 	remove_milliet() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	remove_milliet_id_from_author() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	retrieve_millietId_in_commentaries() (digital_milliet.lib.commentaries.CommentaryHandler method)

S

 	
 	search() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	(digital_milliet.lib.commentaries.CommentaryHandler method)

 	(digital_milliet.lib.mirador.Mirador method)

 	
 	simpleFormat() (digital_milliet.lib.mirador.Mirador static method)

 	simplify_milliet() (digital_milliet.lib.commentaries.CommentaryHandler method)

U

 	
 	update() (digital_milliet.lib.mirador.Mirador method)

 	update_author() (digital_milliet.lib.author_builder.AuthorBuilder method)

 	
 	update_commentary() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	update_contributors() (digital_milliet.lib.commentaries.CommentaryHandler method)

 	user_in_community() (digital_milliet.lib.oauth.OAuthHelper method)

V

 	
 	validate_annotation() (digital_milliet.lib.commentaries.CommentaryHandler method)

 _static/up-pressed.png

_images/dmhome.png
THE DIGITAL MILLIET

PROJECT Browse About Add Record Logout
THE DIGITAL MILLIET
PROJECT
Combining Ancient Text And Image
Author v Search

Browse

Welcome to the home of the Digital Milliet! This project collects together digitized passages of Greek and Latin that are related to painting in the ancient world,
creating a cross-referenced database that a user can search by author, title, or topic. For more information, please see our about page.

The Digital Miliet would not be possible without the support of:

S — KRESS

_images/dmimage.png
Commentary

In this passage, Strabo lists the famous men from Ephesus, including *Parrhasius the
2ce9baabbfa77047c690cfd31028685c8d29802. painter” (Mappdatog & wypdgoc) and Apelles (AteAAfg). Conceming the fact that

Parrhasius was born in Ephesus, see texts 257 and 259,

Annotation Authors and Editors

Created by Valére Toion
Contrbutors: Bridget Almas

annotation...|

Add tags here.

®Cancel Zsave

_images/dmbrowse.png
THE DIGITAL MILLIET
PROJECT

Browse by

Author and Work
Aristotle

Poetics

Athenaeus of Naucratis
Deipnosophistae

Diogenes Laertius
Vitae philosophorum

Harpocration, Valerius
Lexicon in decem oratores Atticos

Pausanias
Description of Greece

1454b (Commentary 34)
1450b (Commentary 33)

1448a (Commentary 132)
1461b (Commentary 238)

11.19 (Commentary 289)

7.1 (Commentary 113)

Polugnotos (Commentary 100)
Parrasios (Commentary 257)

1.22.7 (Commentary 531)

1.18.1 (Commentary 118)
1.17.21.17.4 (Commentary 117)
9.4.1-9.42 (Commentary 123)
1.15.1-1.15.3 (Commentary 116)
5.19.2 (Commentary 75)

8.11.3 (Commentary 156)
9.35.6:9.35.7 (Commentary 78a)
5.11.6 (Commentary 163)
10.2510.26 (Commentary 107a)
10.28-10.31 (Commentary 107b)
1.1.3 (Commentary 339)

1.22.6 (Commentary 121)

6.6.1 (Commentary 158)

8.9.8 (Commentary 354)

3.19.4 (Commentary 367)
1.29.15 (Commentary 369)
9.35.6:9.35.7 (Commentary 449)
9.26.6 (Commentary 76a)

iet Commentary

27
33
34
35
36
37
38
39
40
4
52
53
75
76a
077
78a
93
100
107a
107b
m
13
114
15
116
17
118
121
123
129
131
132
133
135
156
158

Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit

_static/up.png

_images/dmedit.png
THE DIGITAL MILLIET
PROJECT

Edit Commentary : 40
Text:
umiets greekLittig0086.tig004 KaBanep odv Kal £TiL TAC YPa@iic, Tav Tig Tolg XpWiaot T pEv Giotov mouien T Moppw T 6& Ti MLV, T
pev iy Gvakexwpnkéval Bokel TiiG YPariG TO BE MpoEXe, AHQOTEPWY abT@V BVTwy Erit T avTig
Emgaveia
Ancient Greek v
Commentary:
I B H ® = E %

1

1. The treatise *De audibilibus* (On things heard) belongs to the *Corpus Aristotelicum*, although it was not authored by
Aristotle. Instead, the author is believed to be a member of the Peripatetic School, such as Straton of Lampsakos, which means
that the text would have been written sometime around the beginning of the 3rd century BC (Gottschalk 1968, pp. 453-455; Klein
1981, pp. 200-207). "*De Audibilibus*" deals with the mechanics of sounds, especially sounds made by the human voice, and shows
a close connection with Problems 11 (Hett 1936, p. 49; Gottschalk 1968, pp. 437-440; Klein 1981, pp. 171-173; Louis 1993, pp. 1-
6).

2. This passage essentially compares a painter's technique with the way in which sounds are perceived. To explain, some sounds
seem to be “closer” while others seem more “distant,” even if they originate from the same place. Similarly, in the case of
painting, some colours appearing on a single surface seem to 'go back' (anachoréo) while others 'stand out' (proekein), and this
interplay creates an impression of depth. According to Plutarch (*De Gloria Atheniensium* 346a), this technique was the
specialty of the painter Apollodorus of Athens, who was nick-named the "skiagraphos® (literally: "shadow-painter.” Usual
meaning: "perspective-painter’). On Apollodoros of Athens and "skiagraphia,® see texts 194 and 195.

3. The technique of creating depth through the use of colours was used in Hellenistic painting and mosaic art. Examples of this
include the painting decor of the 'Throne of Eurydice' and the 'Tomb of Persephone’ (Vergina-Aigai, Macedonia), the 'Tomb of the
Judgment® especially the metopes of 'the Battle of the Centaurs and Lapiths' (Lefkadia Macedonia), 'The hunt' at the 'Tomb of

Tags

_images/dmnew3.png
Tags

[——)

Semantic Tags

[—————T—

Enter Bibliography:

Enter English Translation:

Search for an English translation:

Al available works

O enter your own text URIL:

‘ Or enter your own text URI:

Enter French Translation:

Search for an French translation:

_images/dmnew4.png
TIIF Manifests

Publisher || Address of mF Manifests

_images/dmnew.png
THE DIGITAL MILLIET
PROJECT

Identifiers

Milliet Number:

Enter the Milliet number for this passage and associated commentary

Primary Source Passage:

Search for a primary source text: Text Direction: ® Left to Right () Right to Left

Al available works

O enter your own text URIL:

Or enter your own text URL: Select

English v

Enter Commentary:

Lansuage: Englisl v I B H % =

it
@

_images/dmnew2.png
Primary Source Passage:

Search for a primary source text:

(»

De partibus animalium Edition
(digil) Aristote,De parious animalium

Vita Sancti Marii Edition
(digmit) Dynamus Paticus, Vita Sanct M

De Cura pro Mortuis Gerenda ad Paulinum Episcopum Edition
(digmill) Augustinus, De Cura po Meruis Gerenda ad Pauinum Episcopum

De Peccatorum Meritis et Remissione et de Baptismo Edition
Parvulorum

(digmil) Augustinus,De Peccatorum Merts et Remissione et de Baptismo
Paronm

EN o epstlam parmeniani Edition
(i) Augustius, Contra Epstlm Pamenini
v
Contra Partem Donati Post Gesta Edition
(i) Augustus, ContsParem Dot Post Gesta
o

De Patientia Edition
(digmil) Augustinus, De Patientia

Psamlus Contra Parten Donati Edition
(digmill) Augustinus, Psamius Contra Parten Donati

H %

_images/dmread.png
THE DIGITAL MILLIET
PROJECT

Pausanias, Description of Greece, 5.19.2

povouaxodvTog 5& Alavtt "EKTOpOg KaTa Tiv MpOKAOw, PETagd £0TNKeV abTidv “Epi
aloxiom T €lbog éowvia: pog BE TavTy Kat KM@Y Zapiog év ApTépibog Lepi FRE
TG Epeoiac énoinoev “Epw, THY iy Ypdwag Ty £ Taic vavaly EAAVWY.

Ajax is fighting a duel with Hector, according to the challenge, and between the pair
stands Strfe in the form of a most repulsive woman. Another figure of Strife is in the
sanctuary of Ephesian Artemis; Calliphon of Samos included it in his picture of the battle
atthe ships of the Greeks. (trans. : Jones 1926)

Annotation Authors and Editors
Created by Valére Toillon

Commentary
On the Battle at the ships of the Greeks by Kalliphon of Samos (7th or éth Century BC).

1.

We know very lttle about Pausanias. According to several modem scholars as well as references within his books of Description of Greece!, Pausanias was bor around 115 AD,
in Lydia, possibly in the city Magnesia near Mount Sypilus. The * Description of Greece (Periegesis Hellados) was written within a period of about twenty years (between ca.
155/60 10 175/80 AD). The ten books aim to recorded "what s the most memorable” In other words Pausanias wants to reported all the things that have been heard or written
(logoi) and everything worth seeing (théorémata) concering mainland Greece. Thus, Pausanias wanted his books to be at the same time entertaining and instructive. But, the
purpose was ambiguous and Pausanias did not enjoy a large audience in Antiquity (Habicht 1985, pp. 1-27 and pp. 117-164; Pouilloux 1992, pp. FXXIX; Arafat 2004, pp. 8:36; on
the cultural context of the Periegesis see: Lafond 2001; on the manuscript tradition: Casevitz 1992, pp. XXXI-XLVI, esp. pp. XXXFXXIV).

2.

The text s taken from the description of the Kypselos' chest (Paus. V, 17.5-19.10). While describing a scene representing Ajax and Hector combating on either side of Eris (the
personification of Strife; on the duel between Ajax and Hector see: lliad, 7. 225-276), Pausanias introduces the name of Kalliphon of Samos, probably a 7th or 6th Century BC
painter (see Lippold, RE 10.2 (1919) col. 1656 s.v. *Kalliphon 5°). This painter, only known by Pausanias account, s also quote in texts 76a and 107a (Polygnotos' painting at the
Cnidian Lesche). On both the Kypselos’ chest and on Kalliphon of Samos' painting, Eris was pictured as an ugly woman (LIMC Il .v. Eris 2; Eris 3).The only picture known of Eris
during the archaic period can be seen on a blackfigure cup dated ca. 560-550 BC (Berlin, Staatlichesmuseen F1775; LIMC Iil s.v. Eris 1); Eris is figured as a running winged figure
(Giroux, LIMC lls.. Eris, p. 846-850; Jacquemin 1999, p. 222).

3.

In Pausanias'time, the Artemis temple at Ephesus was a Hellenistic building. The archaic temple was burnt the 21th of July 356 BC. It s possible that Kalliphon's paintings had

been destroyed during the fire. Also, a preceding fire had occurred in 395 BC. So, Pausanias probably never saw the paintings, conveying only what he knows about them
(Bammer 1984: Jenkins 2006, op. 47-70: on Pausanias and archaic times: Arafat 2004. pp. 43-79).

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Digital Milliet’s documentation

 		
 Overview

 		
 Installation Instructions

 		
 Configuration

 		
 Authentication and Authorization

 		
 Design: Motivation, Standards, Dependencies

 		
 Workflow

 		
 Database Schema

 		
 Modules

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

